

Dissecting the Workload of a Major Adult Video Portal

Andreas Grammenos

Aravindh Raman

Timm Böttger

Zafar Gilani

Gareth Tyson

Computer Lab / Alan Turing Institute

Introduction

- Streaming Content today is extremely popular
 - Popular services like Youtube, Netflix, and other thrive
 - Well studied over the years predictable traffic patterns.

- There is however, another side: Adult Video Streaming...
 - Lack of understanding of traffic type and patterns.

- This paper: Present a large-scale analysis of access
 patterns for a major adult website
 - Focusing on understanding how individual viewer decisions (dubbed "journeys") impact the workload observed.
- Gathered very granular data from a popular CDN key points:
 - 1 hour of access logs for resources hosted served by the site.
 - 62K Users.
 - >20M access records.
 - >3TB of exchanged data.

Methodology (cont.)

- Web Scrape data
 - Retrieved metadata from source site based on CDN logs i.e.:
 - Associated Categories
 - Associated hash-tags
 - View counters
 - Like/Dislike ratio
- In total we gathered metadata for near 5m videos covering over 91 % of the total requests observed in our CDN logs

Characterization

- Initially, we perform a basic characterization of the following:
 - Corpus served
 - Overall site workloads (at the CDN level).
- We characterize the following:
 - Resource Type
 - Video Duration
 - View Counts
 - Category Affinity

Characterization: Resource Type

• Web sites consist of wide range of media – let's see in our case.

Fraction of requests to each resource type - shows distributions for both number of requests and number of bytes sent by the servers

Characterization: Video Duration

Consequence: most accesses are driven by *non-video* content consumption

CDF of consumed video duration based on category using All and top-5 categories. Note "All" refers to all content within any category.

Characterization: View Counts

• Explore the popularity distribution of the resources, within our logs

CDF Number of requests per object

Distribution of video chunk per video request

Characterization: Category Affinity

• Subtle differences exist – exploring category co-location.

Heatmap showing the fraction of the pair-wise coexistence for the 5 most popular categories

Heatmap normalised by the total number of videos(across all categories)

Characterization: Per-Session Journey

- Seen so far workload dominated:
 - Image and video content
 - Patterns which suggest that users *rarely* consume *entire* videos
- Dive into individual sessions ("journeys") we inspect:
 - Intra-Video Access Journeys
 - how users move between chunks within a single video?
 - Inter-Video Access Journeys
 - How individual sessions move between videos?

Intra-Video Journeys: Access Duration

• We explore the time each user dedicates to an individual video*.

CDF of the approximate consumption for each individual video across sessions for all and top-5 categories

CDF of the bytes out per User/Video combination for all and top-5 categories

108

10⁹

*Note that this is different to Figure in slide 7, which is based on the video duration, rather than the access duration.

Intra-Video Journeys: Cancellations and Skip Rates.

• Implications of incomplete video download: users skip/cancel!

Skipped blocks for each category

Inter-Video Journeys: Video Load Points.

Video Load Points – vantage points for website traffic origins?

Where the videos are watched the most: >95% of videos are watched from either the main page of the video, homepage of the site, and

Where the videos are loaded the most: Y-axis gives the ratio of bytes out and total file size across users from various pages

Inter-Video Journeys: Inter Video Navigation

• Exploring the transition of views between videos

Sankey Diagram showing transitions between videos

Implications: Save BW

• Geo-Aware Caching: Can result in significant bandwidth savings!

CDF of number of users who have watched the same video in their city (blue) or a video from the same category in their city (orange)

Percentage of traffic saved at back-haul by implementing city-wide cache (Y-1) and the percentage of users who would have benefit by the scheme (Y-2).

Implications: Reduce Latency

- Predictive Loading
 - Predicting popular chunks
 - Pre-load thumbnail images as pre-loaded (cached) chunks
 - Explore behavioral trails to direct traffic to different caches serving different interests.
 - Explore recommending videos on what resides in the cache.

Conclusions

- Concluding
 - Explored the characteristics of the traffic that a large adult-video portal has focusing on understanding in-session journeys.
 - Key take-aways:
 - Bulk of served objects are not videos!
 - Bulk of data is for video!
 - Small percentage of popular content.
 - This is just the start:
 - Possibility to explore/validate results against different portals
 - Develop optimized delivery systems and caching schemes

Questions?

