Exploring the Eastern Frontier: A First Look at Mobile App Tracking in China

Zhaohua Wang Zhenyu Li Minhui Xue

Gareth Tyson

- Why study the mobile app tracking in China?
- Dataset and methodology
- How prevalent are ATSes?
- What's the community structure of ATSes?
- How are users impacted by ATSes?
- Conclusion

- Why study the mobile app tracking in China?
- Dataset and methodology
- How prevalent are ATSes?
- What's the community structure of ATSes?
- How are users impacted by ATSes?
- Conclusion

Rising concerns about mobile app tracking

- CISCO projected: by 2022, there will be 1.5 mobile devices per capita and monthly global mobile data traffic will be 77 EB
- Many mobile apps are bundled with mobile Advertising and Tracking Services (ATSes) for various purposes
- Concerns:
 - Rich and sensitive user data
 - Beyond users' control

How about China?

- One of the fastest-growing countries in mobile data traffic
 - By 2022, the mobile data will reach 17.5 EB per month
- Unique local regulations and network policies
 - Many western services (e.g. Google, Facebook) are not accessible
- Chinese tracking market is poorly understood
 - Who are the major players?
 - What kind of mobile apps do trackers prefer?

Source: marketingtochina.com, 2

- Why study the mobile app tracking in China?
- Dataset and methodology
- How prevalent are ATSes?
- What's the community structure of ATSes?
- How are users impacted by ATSes?
- Conclusion

Mobile traffic Data

- User access logs collected from a major 4G cellular ISP
 - ~ 2.8 billion logs of ~ 3.5 million users in a major city of China
 - Identify 1,812 mobile apps, 12% of logs remain unattributed
- Ethical issues
 - Dataset is kept in the ISP's data center and sensitive user IDs are anonymized

Data processing

- Identify ATS domains
 - 4 ATS-specific lists: AdBlock-Plus (the easylist, easyprivacy lists, and easylist China) and hpHosts (the ATS lists)
 - Apply the rules to both the URL and HTTP-Referrer
 - 260M HTTP requests (9.2%) are from ATS domains, 24,985 FQDNs and 8,773 SLDs
- Associate ATS domains to apps :
 - We focus on the top-500 apps that account for 99% of traffic
 - Heuristic approach: associate an ATS request to the closest app's request that precedes it
 - Intuition: ATS's requests should happen at a time close to the app's access (<1s)
 - Problem
 - background traffic from other mobile apps
 - periodic requests issued by some trackers

Data processing

• Associate ATS domains to apps : heuristic approach

Limitations

	The 4 ATS lists used for ATS identification	The heuristic method for the ATS-to- app association
limitation	They may not fully cover the current ATSes in mobile networks in China	It may not fully capture the up-to-date ATSes of individual mobile apps
Observation & Validation	Recognized ATS domains are in line with the Chinese mobile ecosystem	Manually test existing ATS domains for the top 10 most popular apps Association accuracy of F1-score 0.75 (precision: 0.7, recall: 0.82)

- Why study the mobile app tracking in China?
- Dataset and methodology
- How prevalent are ATSes?
- What's the community structure of ATSes?
- How are users impacted by ATSes?
- Conclusion

Metrics

- Model a bipartite graph G = (U, V, E)
 - Based on the domains (FQDNs) accessed within an app
 - *U*: mobile apps
 - *V*: the ATS and normal visited domains
- *G* reveals the connections between ATS domains and mobile apps

Presence of ATSes

- ATSes are widely used by mobile apps
 - 6 ATSes for FQDNs (4 ATSes for SLDs) per app in median
- Cross-app tracking of users
 - Over 30% of ATSes appear in at least 2 apps
- China's tracking ecosystem is dominated by key domestic trackers

	ATS (SLDs)	# FQDNs	% App	ATS (SLDs)	#FQDNs	s %App
pingma.qq.com,	qq.com	31	75	kuwo.cn	1	6
zxcv.3g.qq.com,	umeng.com	4	67	flurry.com	1	6
omgmta.qq.com,	71.am	1	57	baidustatic.com	4	6
sngmta og com	baidu.com	45	34	mmstat.com	3	6
Shginta.qq.com,	uc.cn	3	28	hiido.com	2	4
mi.gdt.qq.com	360.cn	5	25	scorecardresearch.com	2	4
	google-analytics.com	1	14	funshion.net	1	4
The top 20 ATS domains (SLDs) measured	ksmobile.com	1	13	doubleclick.net	1	4
	cnzz.com	33	9	ifeng.com	5	4
by the number of apps they are used by	xiaomi.com	2	7	letv.com	3	3

App's ATS usage

The distribution of tracker domains (FQDNs) by different app categories, each box is ranked in descending order by the median

- Apps are grouped into 23 categories based on their functionalities
- Trackers tend to be active in some app categories, for example
 - *InputMethods* has the most trackers (13 ATSes) per app
 - *Communication* has the highest mean value of 16 ATSes per app
 - Top 5% of *News* apps use over 26 ATSes

- Why study the mobile app tracking in China?
- Dataset and methodology
- How prevalent are ATSes?
- What's the community structure of ATSes?
- How are users impacted by ATSes?
- Conclusion

Metrics

- Model a bipartite graph G = (U, V, E)
 - Based on the domains (FQDNs) accessed within an app
 - *U*: mobile apps
 - *V*: the ATS and normal visited domains
- 1-mode ATS-projection graph G' = (V', E')
 - Create from the largest connected component in G
 - V': the ATS domains in V
 - E': if two vertices share a common neighbor (app) in G
- *G'* captures the co-location of multiple ATSes used within individual apps

The structure of graph G'

- Identify two types of trackers with the degree centrality of ATSes in G'
 - Popular ATS (>0.2) and non-popular ATS
 - Popular ATSes are present more pervasively among apps
- Popular trackers are densely connected with the non-popular ones
 - High global clustering coefficient of G', but low coefficients for popular trackers
- Non-popular trackers form 56 local communities
 - Clauset-Newman-Moore greedy method for inferring community structure
 - 10 communities and 46 isolated components

Co-location of ATSes

- The popular trackers tend to co-locate in the same apps with each other
 - qq.com (Tencent), umeng.com (Alibaba), 71.am (Baidu)

The co-occurrence probability distribution of the top 20 ATSes (SLDs), Quantified by the Jaccard Similarity Coefficient and ranked by the popularity

Specialization of ATSes

- The local community of non-popular trackers is dedicated to specific app categories
 - Tracker Specialization Index (TSI): $\frac{|U(a) \cap U(b)|}{|U(a)|}$, U(a) and U(b) are sets of trackers in the local community *a* and app category *b*

TSI distribution of non-popular tracker communities

We observe that they provide specialized tracking services relevant to particular apps, e.g. *education apps*

- Why study the mobile app tracking in China?
- Dataset and methodology
- How prevalent are ATSes?
- What's the community structure of ATSes?
- How are users impacted by ATSes?
- Conclusion

ATS Monopolies

- To test whether ATSes have a monopoly on certain users' data
- UTP : user tracking potential
 - Fraction of users that a tracker can track
- TMI: tracking monopoly index
 - The extent to which a tracker reaches users that others do not have
 - $TMI_i = \frac{1}{|S_i|} \sum_{j \in S_i} \frac{1}{|m_j|}$,
 - S_i : the set of users that can be reached by tracker *i* m_i : the number of trackers that can reach user *j*

UTP=4/7 TMI=1/4*(1/2+1+1/2+1/2)=5/8

ATS Monopolies

- High penetration of the tech giants, for example
 - *qq.com* (Tencent) holds a high UTP (over 0.8) and TMI (about 0.3) metrics
 - 71.am (Baidu), uc.cn (Alibaba), 360.cn (360 Security) track under 20% of users, but have relatively high TMIs (about 0.3)

UTP and TMI distribution of the top 30 tracker domains (SLDs), ranked in descending order by the UTP values

ATS traffic consumption & PII leakage

- ATS *v.s.* app traffic volumes
 - 5% of users send over 10% of app traffic to trackers
 - iOS users tend to send less data to trackers than Android users
- PII leakage and regional destination
 - Detect the common UIDs in URLs
 - 10% of users send their PII to trackers
 - IMEI, IMSI, and MAC are equally likely to be collected by trackers
 - 90% of PII tracking flows are inside mainland China

Common UIDs host on mobile devices

UID	Description	UID	Description
IMSI IMEI ICCID	SIM ID Device ID SIM number	MAC ADID/IDFA	Unique hardware ID Advertising ID

Tracking domains (SLDs) that collect PII

- Why study the mobile app tracking in China?
- Dataset and methodology
- How prevalent are ATSes?
- What's the community structure of ATSes?
- How are users impacted by ATSes?
- Conclusion

Summary of contributions

- The first study on China's mobile app tracking from a 4G cellular network
- Key finding 1: a distinctive mobile tracking market dominated by several top popular domestic trackers
 - Prevalent cross-tracking of users and Prominent tracking in some types of apps
- Key finding 2: a well-connected tracking community
 - Popular trackers regularly co-occur with non-popular ones
 - Non-popular trackers cluster into local communities, each community tends to track a particular relevant type of apps
- Key finding 3: most of the PII data are confined to China
 - 10% of users send PII data to trackers

Thank you

Any question?

wangzhaohua@ict.ac.cn

