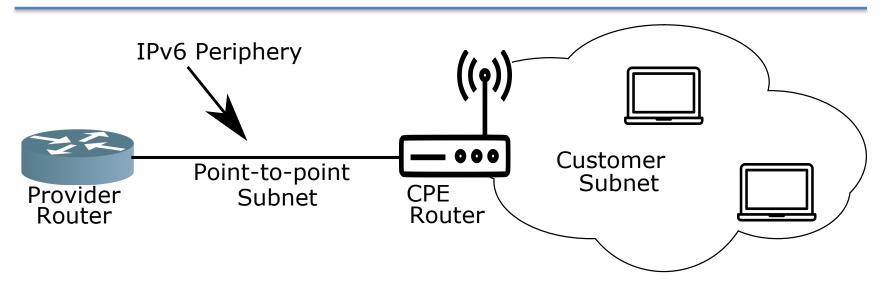


Discovering the IPv6 Network Periphery

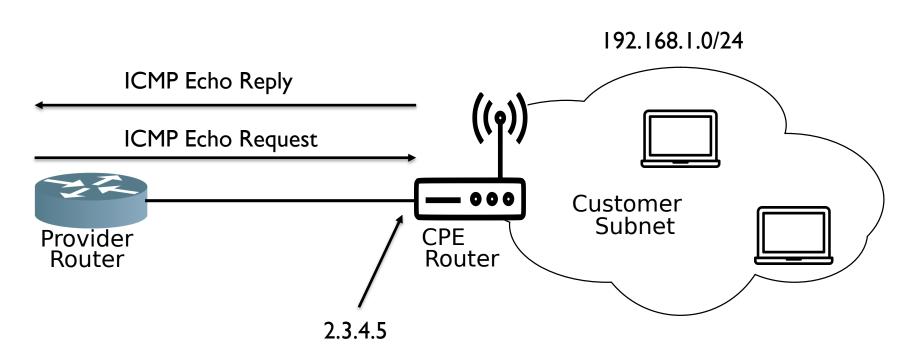
Erik Rye (CMAND) Robert Beverly (NPS)

Passive and Active Measurement Conference March 30, 2020

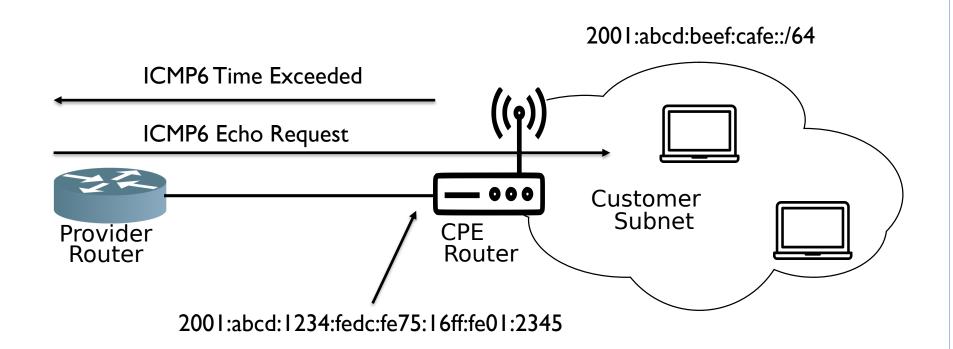


Background

- IPv6:
 - Large address space + sparsity
 - Ephemeral and dynamic addressing
 - No need for address translation
- Implication:
 - IPv6 is deployed <u>differently</u> than IPv4!


IPv6 "Periphery"

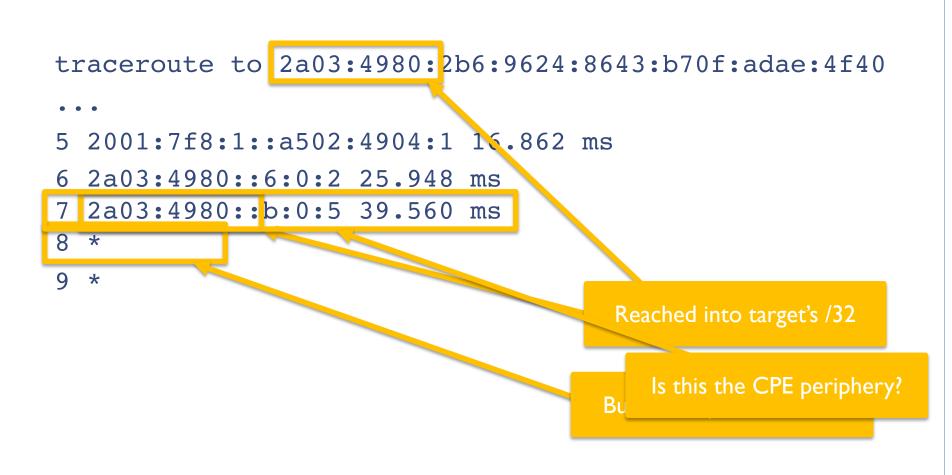
- Device at customer premises (CPE) is a routed hop!
- Subnet allocated to link between provider's router and CPE
- Different subnet allocated to customer, on other side of CPE


IPv4 Periphery Discovery

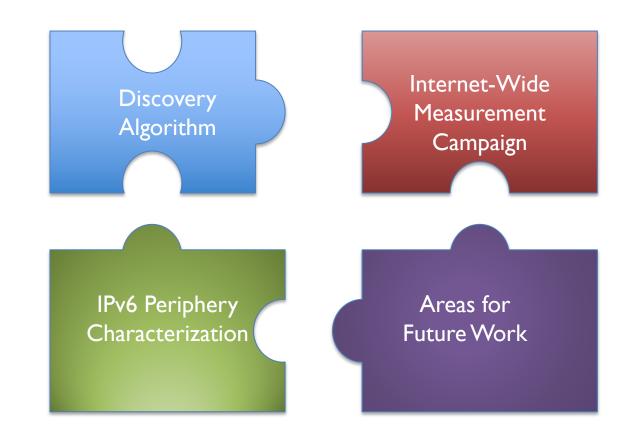
IPv4 address space can be exhaustively probed, so CPE do (or don't) respond to echo requests like every other public IPv4 host. Customer RFC1918 subnet isn't reachable

IPv6 Periphery Discovery

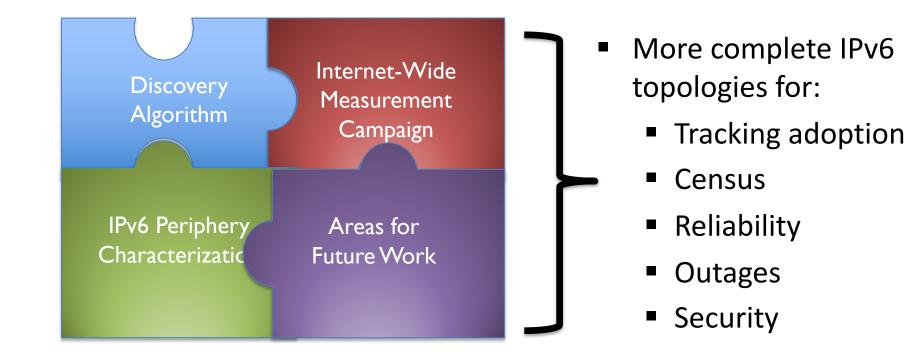
CPE device is a routed hop to on the path to the customer subnet. Traceroute echo request unlikely to hit a customer device – but doesn't need to in order to discover periphery.


The Reality of IPv6 Traceroutes

- Many mapping systems trace to a <u>random</u> address within advertised BGP prefixes:
 - Unlikely to reach a prefix allocated to a customer's CPE or her network
 - Even less likely to reach a responsive host
- Results are therefore ambiguous



The Reality of IPv6 Traceroutes...


Contributions

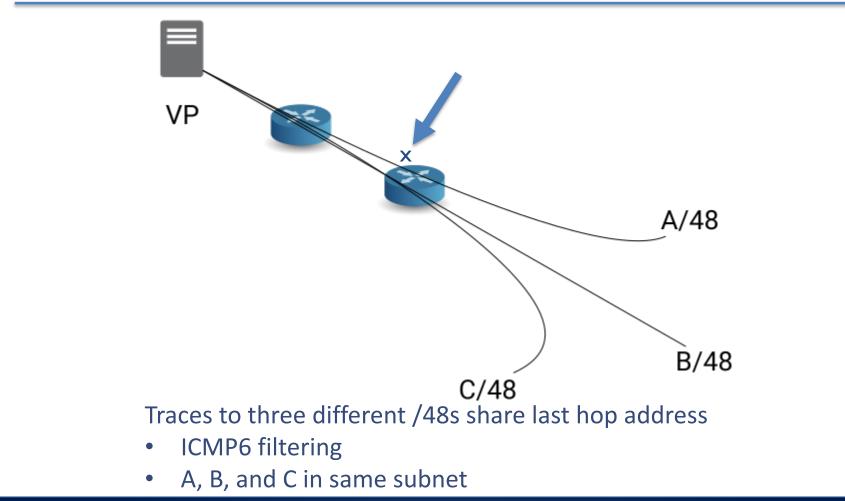
Contributions

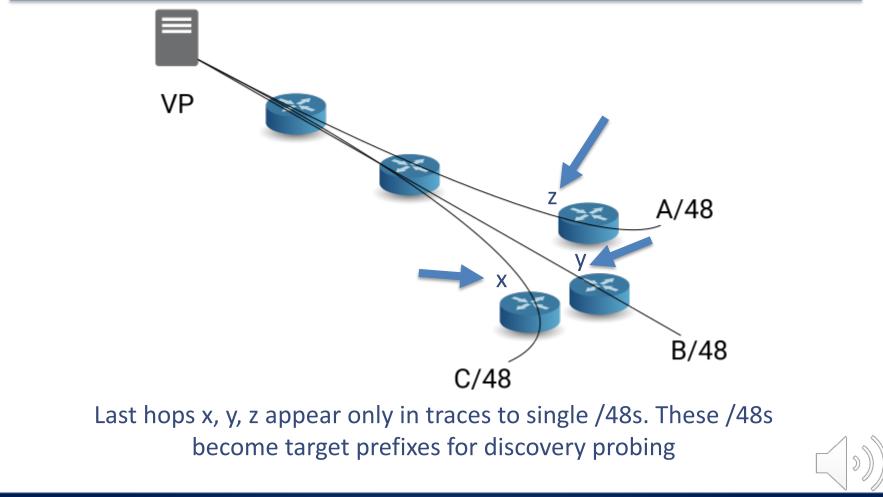
Discovery Algorithm: Edgy

Discovery Algorithm

- Two phases:
 - Initialization: find "interesting" /48s
 - Discovery: iteratively decompose /48 to find periphery

Edgy: Initialization

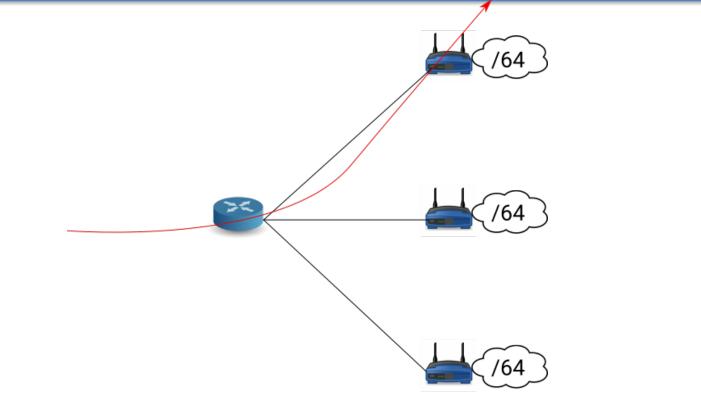

- Examine previous traceroute campaigns:
 - BGP-Informed seed
 - CAIDA trace to every routed /48, Aug 2018
 - Hitlist-Informed seed
 - Traces to targets in IPv6 hitlist
 - "IP of the Beholder", IMC 2018
- Find "interesting" target /48 prefixes:
 - Last hops unique to one /48



Initialization: Scenario 1

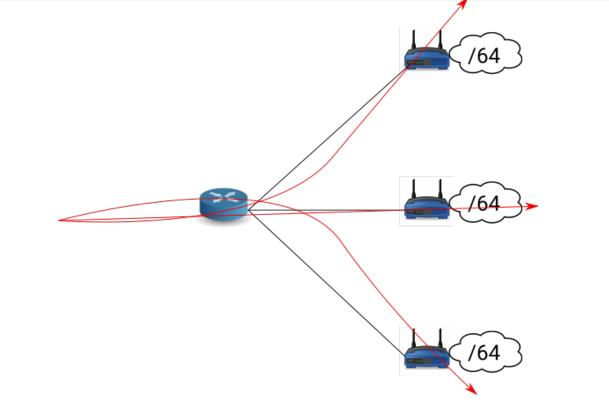
Initialization: Scenario 2

- Each with different probe granularity
 - All /56, /60, /62, and /64 subnets of target /48
- Continuation threshold
 - Number of new addresses > n
- Intuition Probe prefixes that produce new periphery addresses at progressively finer granularities


Discovery

Algorithm

Discovery Algorithm: Edgy



Coarse-grained discovery finds some periphery topology, but misses significant portions if small subnets allocated

Discovery Algorithm: Edgy

/48 prefixes that pass discovery thresholds are reprobed at progressively finer granularities, uncovering more periphery structure

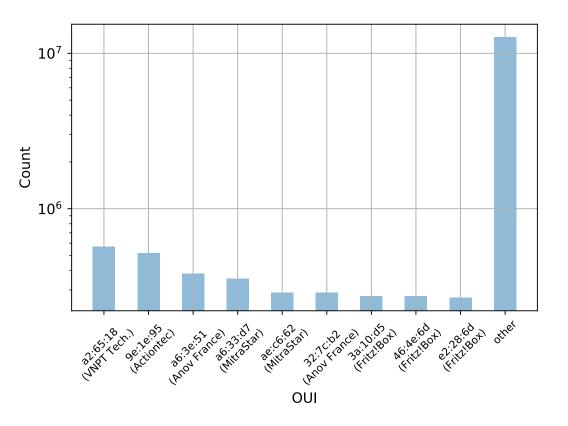
Measurement Campaign

Internet-Wide Measurement Campaign

- Sept Oct 2019
- Probed 130k (BGP-Informed) and 111k (Hitlist-Informed) /48 prefixes
 - Single VP in Lausanne, Switzerland
- Followed ethical probing best practices
 - Received no opt-out requests
- Discover ~64M unique router interface addresses
- Nearly entirely disjoint from input seed
- Results from two different seeds largely disjoint
 - Edgy discovers new topology
 - Different seeds discover different new topology

Periphery Characterization

BGP-Informed Hitlist-Informed **Round** Prefixes Unique Unique Cum. Prefixes Unique Unique Cum. Last Hops Last Hop Unique Probed Last Hops Last Hop Unique Probed Last Hops Last Hops $/48^{\circ}$ $/48_{-}$ 130 447 4,619,692 33,8314,619,692 (111.670) 9,217,137 89,268 9,217,137 '56'2/6034,520 12,228,91626,08213,410,60167,107 11,021,329 74.302 11,365,91024.832.391 15.569.221 /6212,014 14,770,061 $11,\!675$ 19,9423 1,4625,428,992 32,718 29,248,703 37,169,357 15,340,591 5,326,2987,833 /642.6411.531Begin with ~same # prefixes ~25% vs ~60% pass threshold Round / probe granularity Only 1.5M in set intersection Last hop addressing characteristics differ

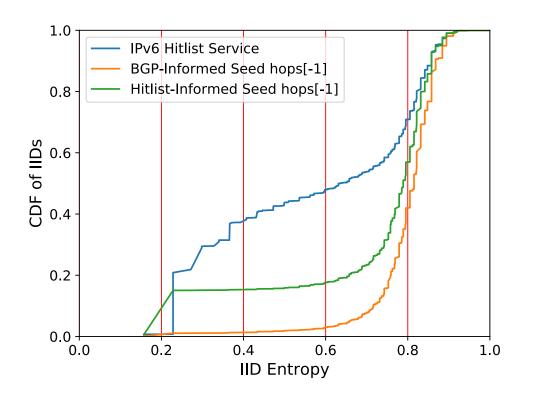

IPv6 Periphery

Discovering the IPv6 Network Periphery

EUI-64

- EUI-64 addresses are *still* pervasive
 - RFC4941 Privacy Extensions for SLAAC published in 2007
- 30M EUI-64 addresses seen (~50% total discovered)
- I6M unique MAC addresses (prefix cycling in select providers)

PAM 2020

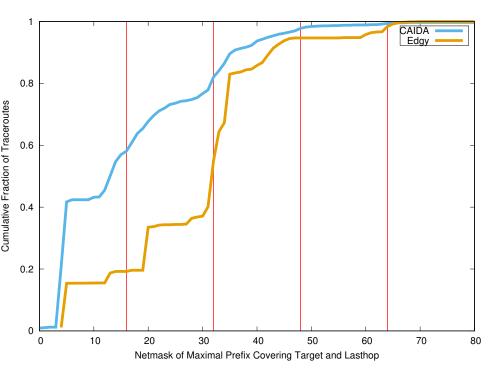

IPv6 Periphery

IID Entropy

Edgy-Discovered Addresses

- Higher entropy IIDs
 - (BGP-, Hitlist-Informed seed plot lines)
- EUI-64 SLAAC, SLAAC w/P.E.
- Suggests periphery (eg CPE, unmanaged devices)
- Ex: 429b:cdff:fe1e:c5e0, 8871:14ad:4cf4:50a2
- Previous Studies
 - Lower entropy IIDs
 - Often manually assigned
 - Easy to recall
 - Suggests managed devices (eg provider infrastructure, servers)
 - Ex: :: I , ::beef

PAM 2020


IPv6 Periphery

Edgy/Ark Comparison

Edgy traces reach destination more • often, and farther into destination prefix

- But, 2 orders of magnitude more
- probes, so not directly comparable of CAIDA Ark IPv6 traces vs edgy lts 40% Ark traces vs 87% edgy reach target AS Day of CAIDA Ark IPv6 traces vs edgy • results
 - 40% Ark traces vs 87% edgy
- Median common bitmask length • between target and last hop address:
 - $\Delta rk = /13$
 - Edgy /32

IPv6 Periphery

Pathologies: Prefix Cycling

IPv6 Periphery Characterization

- Observe high frequency prefix cycling in some providers
 - 1und1.net (Versatel), Vietnam Posts and Telecommunications Group (VNPT)
 - ~24 hour lifetime before new prefix issued
 - Track EUI-64 addresses across prefix rotations

A week in the life of a MAC address

IPv6 Periphery Characterization

Multiple addres versæeh (ihu s	idgleeday/32	Lower 3 bytes anonymized
1 Feb 2020 2001:1	6b8 0100:10b3:3	Bal0:d5ff:fe <mark>aa:bbcc</mark>
1 Feb 2020 2001:1	6b8 0101:c256:3	Bal0:d5ff:feaa:bbcc
2 Feb 2020 2001:1	6b8 0101:c256:3	Bal0:d5ff:feaa:bbcc
2 Feb 2020 2001:1	6b8 0103:74fe:3	Bal0:d5ff:feaa:bbcc
3 Feb 2020 2001:1	6b8 0101:1f20:3	Bal0:d5ff:feaa:bbcc
4 Feb 2020 2001:1	6b8 0102:d3c4:3	Bal0:d5ff:feaa:bbcc
5 Feb 2020 2001:1	6b8 0102:d3c4:3	Bal0:d5ff:feaa:bbcc
5 Feb 2020 2001:1	6b8 0100:98a5:3	Bal0:d5ff:feaa:bbcc
6 Feb 2020 2001:1	6b8 0100:98a5:3	Bal0:d5ff:feaa:bbcc
6 Feb 2020 2001:1	6b8 0102:5360:3	Ba10:d5ff:feaa:bbcc
7 Feb 2020 2001:1	6b8 0100:0cac:3	Ba10:d5ff:fe <mark>aa:bbcc</mark>
Address carries over between days All w		n same /46

Pathologies: MAC reuse

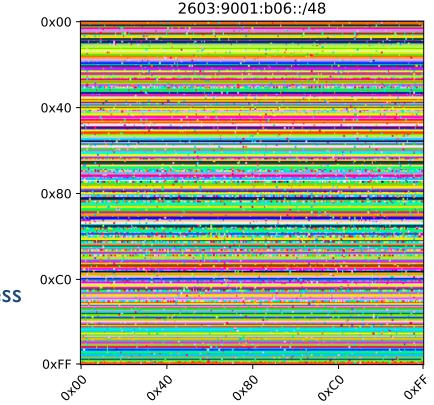
- Of 16M unique MAC addresses in EUI-64 IPv6 addresses,
 - 12.5M only observed once
 - 2.8M observed less than 10 times
 - Likely prefix rotation during study
 - 66 seen more than 1000 times
- 58:02:03:04:05:06 > 750,000 times!
 - Observed in the LTE WAN interface IPv6 address on Huawei hotspots
 - Maybe others?
- f0:7d:68:15:a2:a2 > 186,000 times!
 - D-Link address, but unclear what
 - Maybe another default LTE interface address?

IPv6 Periphery

Provider Allocation Policies

IPv6 Periphery Characterization

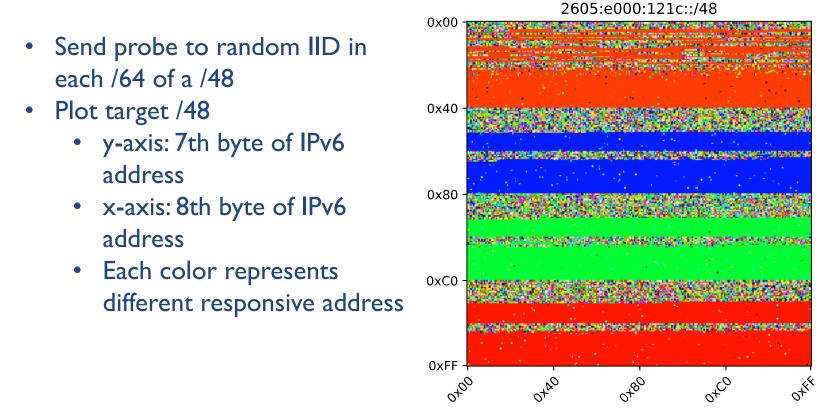
- Edgy sends probes into customer subnets
- Based on last hop responsive addresses, can:
 - Infer how providers allocate subnets to customers
 - Size, eg /48, /52, smaller
 - Uniform vs non-uniform allocations
- Use edgy results to visualize three distinct deployments
 - Uniform /56s
 - "Binary Tree" allocation
 - Uniform /64s



Uniform /56 Allocation

IPv6 Periphery Characterization

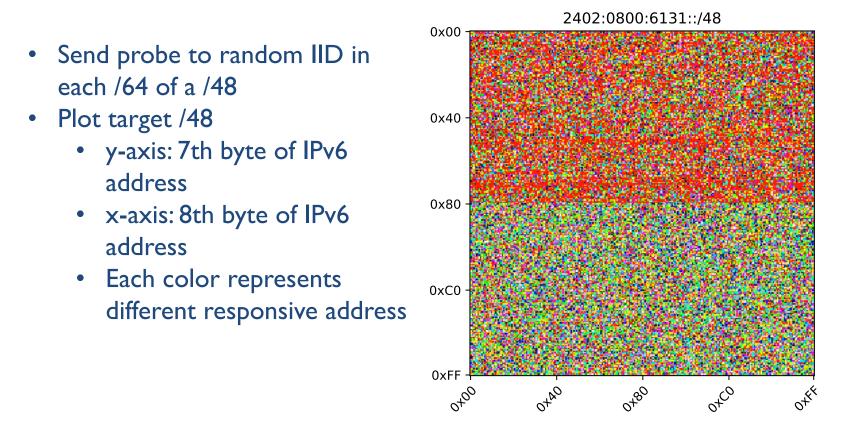
- Send probe to random IID in each /64 of a /48
- Plot target /48
 - y-axis: 7th byte of IPv6 address
 - x-axis: 8th byte of IPv6 address
 - Each color represents different responsive address



Charter Communications /48 divided evenly into 256 /56s

Binary Tree Allocation

IPv6 Periphery Characterization



Time Warner /48 split into 4 /52s, which are then split into /64s for customers. Banding pattern suggests a binary tree approach. Significant portions of each /52 remain unallocated.

Uniform /64 Allocation

IPv6 Periphery Characterization

Viettel Group (VN) /48 split into two /49s, which are then split into /64s for customers. Majority of the /48 is subnetted into /64s.

Future Work

- Longitudinal study of prefix cycling
 - Can we predict/quantify:
 - Exactly when prefixes change?
 - The next prefix for an IID?
 - How addresses move in relation to one another?
- Couple edgy discovery with other measurements
 - ICMPv6 Echoes, banner grabs

Areas for

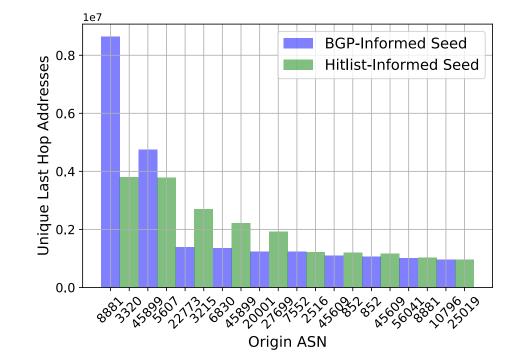
Future Work

Conclusions

- Introduce edgy, a technique to discover IPv6 periphery
 - Probe prefixes at increasingly finer granularities while address discovery meets threshold
 - More of the IPv6 periphery is discoverable than previously mapped
 - Step toward more complete IPv6 topology mapping
- Deeper insights into the IPv6 periphery:
 - Prefix cycling, EUI-64s, MAC reuse
 - Per-provider allocations and deployment

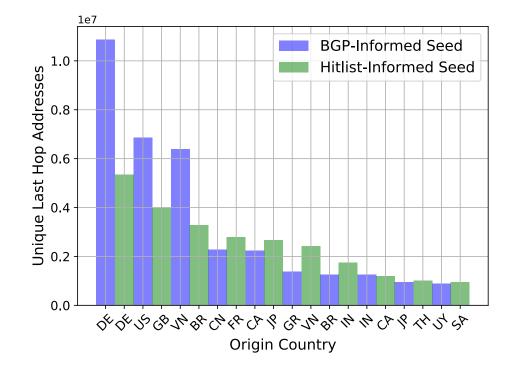
Thanks!

Backup



Address ASN Distribution

IPv6 Periphery Characterization


- 5,109 unique ASNs
- Well-known providers contribute significant #s of addresses to total
 - lundl.net (8881)
 - Deutsche Telekom (3220)
 - VNPT (45899)
 - Sky (5607)
 - Cox (22773)
- Provider prefix churn dynamics inflate totals of some ISPs
 - In particular, 8881 and 45899

Address Country Distribution Characterization

- 153 countries represented
- Distribution of countries uneven between seed data sources
 - US second in BGP-Informed, but 14th in Hitlist-Informed
- Again, prefix cycling overrepresents some countries
 - BGP-informed DE and VN, especially

